
GMPD
GMPD.sol

Smart Contract Audit
Date: 20th December, 2021

2 Private & Confidential

Introduction 3
Auditing Approach and Methodologies applied 3
Audit Details 3

Audit Goals 4
Security 4
Sound Architecture 4
Code Correctness and Quality 4

Security 4
High-level severity issues 4
Medium level severity issues 4
Low-level severity issues 4
Informational-level severity issues 5

Manual Audit: 5
Low-level severity issues 5
Medium level severity issues 5
High-level severity issues 5

Automated Audit 5
Solhint Linting Violations 5
Mythril 6
Slither 6

Disclaimer 7

Summary 7

https://docs.google.com/document/d/1jSb9u-vtLGyrfQ2L5u53nw7uI5YYzg1nrLTutbCmFs8/edit#heading=h.m1brca5dvzsw
https://docs.google.com/document/d/1jSb9u-vtLGyrfQ2L5u53nw7uI5YYzg1nrLTutbCmFs8/edit#heading=h.sksfzqm186ci

3 Private & Confidential

Introduction

This Audit Report mainly focuses on the overall security of the GMPD contract. With this report,
we have tried to ensure the reliability and correctness of their smart contract by a complete and
rigorous assessment of their system's architecture and the smart contract codebase.

Auditing Approach and Methodologies applied

The Nonceblox team has performed rigorous analysis of the project starting with analyzing the
code design patterns in which we reviewed the smart contract architecture to ensure it is well
structured and safe use of third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract to find any
potential issues like race conditions, transaction-ordering dependence, timestamp dependence,
and denial of service attacks.

In Automated Testing, We tested the Smart Contract with our in-house developed tools to
identify vulnerabilities and security flaws.

The code was tested and this included -

● Analyzing the complexity of the code in-depth and detailed, manual review of the code,
line-by-line.

● Analyzing failure preparations to check how the Smart Contract performs in case of any
bugs and vulnerabilities.

● Checking whether all the libraries used in the code are on the latest version.
● Analyzing the security of the on-chain data.

Audit Details
Project Name: GMPD

Languages: Solidity (Smart contract)
Platforms and Tools: Remix IDE, Solhint, VScode, Slither, Mythril

4 Private & Confidential

Audit Goals

The focus of the audit was to verify that the Smart Contract System is secure, resilient, and
working according to the specifications. The audit activities can be grouped into the following
three categories:

Security
Identifying security-related issues within each contract and the system of contract.

Sound Architecture
Evaluation of the architecture of this system through the lens of established smart contract best
practices and general software best practices.

Code Correctness and Quality
A full review of the contract source code. The primary areas of focus include:

● Accuracy
● Readability
● Sections of code with high complexity

Security
Every issue in this report was assigned a severity level from the following:

High-level severity issues
Issues on this level are critical to the smart contract’s performance/functionality and should be
fixed before moving to a live environment.

Medium level severity issues
Issues on this level could potentially bring problems and should eventually be fixed.

Low-level severity issues
Issues on this level are minor details and warnings that can remain unfixed but would be better
fixed.

5 Private & Confidential

Informational-level severity issues
Issues on this level are informational details that can remain unfixed but would be better fixed.

Number of issues per severity

INFORMATIONAL LOW MEDIUM HIGH Recommendations

OPEN 0 0 2 0 0

CLOSED 0 0 0 0 0

ACKNOWLEDGED 0 0 0 0 0

Manual Audit:
For this section, the code was tested/read line by line by our developers. We also used Remix
IDE’s JavaScript VM to test the contract functionality.

Low-level severity issues
● None

Medium level severity issues
● Contract Name: GMPD

Line: 35
Description: If a user sets allowance to another user, his tokens can be burnt
without notice, which may result in unintended loss of tokens.
Added Burn function allows any user to burn it’s tokens, If the accounts are
compromised, tokens can be burnt and total circulating supply will be affected.
Recommendation: Avoid burning tokens which are given as an allowance.

● Contract Name: GMPD
Line: 55, 59
Description: In the contract the role Owner can blacklist accounts. Any
compromise to the owner account may allow the hacker to take advantage of
blacklisting accounts at will.
Recommendation: Carefully manage the owner accounts private key to avoid
potential risks of being hacked.

6 Private & Confidential

High-level severity issues
● None

Automated Audit

Solhint Linting Violations
Solhint is an open-source project for linting solidity code, providing both security and style guide
validations. It integrates seamlessly into most mainstream IDEs. We used Solhint as a plugin
within our Remix IDE for this analysis. Several violations were detected by Solhint, it is
recommended to use Solhint’s npm package to lint the contract.

Mythril
Mythril is a security analysis tool for EVM bytecode. It detects security vulnerabilities in smart
contracts built for Ethereum, Hedera, Quorum, Vechain, Roostock, Tron and other
EVM-compatible blockchains. It uses symbolic execution, SMT solving and taint analysis to
detect a variety of security vulnerabilities.

High-level severity issues
● None

Medium-level severity issues
● None

Low-level severity issues
● None

Informational-level severity issues
● None

https://www.npmjs.com/package/solhint

7 Private & Confidential

Slither
Slither, an open-source static analysis framework. This tool provides rich information about
Ethereum smart contracts and has critical properties. While Slither is built as a security-oriented
static analysis framework, it is also used to enhance the user’s understanding of smart
contracts, assist in code reviews, and detect missing optimizations.

High-level severity issues
● None

Medium-level severity issues
● None

Low-level severity issues
● None

Informational-level severity issues
● None

Disclaimer
Nonceblox audit is not a security warranty, investment advice, or an endorsement of the
GMPD.sol contract. Securing smart contracts is a multistep process, therefore running a bug
bounty program as a complement to this audit is strongly recommended.

Summary
The use case of the smart contract is simple and the code is relatively normal. Altogether, the
code is written and demonstrates effective use of abstraction, separation of concerns, and
modularity.

